题目内容
【题目】如图,在五边形 ABCDE 中,∠A+∠B+∠E=α,DP,CP 分别平分∠EDC,∠BCD,则∠P 的度数是( )
![]()
A. 90°+
α B.
α﹣90° C.
α D. 540° -
α
【答案】B
【解析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.
∵五边形的内角和等于540°,∠A+∠B+∠E=α,
∴∠BCD+∠CDE=540°-α,
∵∠BCD、∠CDE的平分线在五边形内相交于点O,
∴∠PDC+∠PCD=
(∠BCD+∠CDE)=270°-
α,
∴∠P=180°-(270°-
α)=
α-90°,
故选:B.
练习册系列答案
相关题目