ÌâÄ¿ÄÚÈÝ
ÔĶÁÏÂÁвÄÁÏ£¬²¢½â´ðÏàÓ¦ÎÊÌ⣺
ÎÒÃÇÖªµÀ£¬¶ÔÓÚ¶þ´ÎÈýÏîʽx2+2ax+a2ÕâÑùµÄÍêȫƽ·½Ê½£¬¿ÉÒÔÓù«Ê½·¨½«Ëü·Ö½â³É(x+a)2µÄÐÎʽ£¬µ«ÊÇ£¬¶ÔÓÚ¶þ´ÎÈýÏîʽx2+2ax-3a2£¬¾Í²»ÄÜÖ±½ÓÓ¦ÓÃÍêȫƽ·½¹«Ê½ÁË£¬ÎÒÃÇ¿ÉÒÔÔÚ¶þ´ÎÈýÏîʽx2+2ax-3a2ÖÐÏȼÓÉÏÒ»Ïîa2£¬Ê¹Æä³ÉΪÍêȫƽ·½Ê½£¬ÔÙ¼õÈ¥a2ÕâÏʹÕû¸öʽ×ÓµÄÖµ²»±ä£¬ÓÚÊÇÓÐ




£¨1£©ÏñÉÏÃæÕâÑù°Ñ¶þ´ÎÈýÏîʽ·Ö½âÒòʽµÄÊýѧ·½·¨ÊÇ£¨ £©£»
£¨2£©ÕâÖÖ·½·¨µÄ¹Ø¼üÊÇ£¨ £©£»
£¨3£©ÓÃÉÏÊö·½·¨°Ñ
·Ö½âÒòʽ¡£
ÎÒÃÇÖªµÀ£¬¶ÔÓÚ¶þ´ÎÈýÏîʽx2+2ax+a2ÕâÑùµÄÍêȫƽ·½Ê½£¬¿ÉÒÔÓù«Ê½·¨½«Ëü·Ö½â³É(x+a)2µÄÐÎʽ£¬µ«ÊÇ£¬¶ÔÓÚ¶þ´ÎÈýÏîʽx2+2ax-3a2£¬¾Í²»ÄÜÖ±½ÓÓ¦ÓÃÍêȫƽ·½¹«Ê½ÁË£¬ÎÒÃÇ¿ÉÒÔÔÚ¶þ´ÎÈýÏîʽx2+2ax-3a2ÖÐÏȼÓÉÏÒ»Ïîa2£¬Ê¹Æä³ÉΪÍêȫƽ·½Ê½£¬ÔÙ¼õÈ¥a2ÕâÏʹÕû¸öʽ×ÓµÄÖµ²»±ä£¬ÓÚÊÇÓÐ
£¨1£©ÏñÉÏÃæÕâÑù°Ñ¶þ´ÎÈýÏîʽ·Ö½âÒòʽµÄÊýѧ·½·¨ÊÇ£¨ £©£»
£¨2£©ÕâÖÖ·½·¨µÄ¹Ø¼üÊÇ£¨ £©£»
£¨3£©ÓÃÉÏÊö·½·¨°Ñ
£¨1£©Åä·½·¨£»£¨2£©Åä·½£»
£¨3£©

£¨3£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿