题目内容
如图,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于C点.
(1)直接写出抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小.请在图中画出点P的位置,并求点P的坐标.
解:(1)∵抛物线y=-x2+bx+c经过点A(-1,0)、B(5,0),
∴
,
解得
,
∴抛物线的解析式为y=-x2+4x+5,
∵y=-x2+4x+5=-(x-2)2+9,
∴Q(2,9);
(2)如图,连接BC,交对称轴于点P,连接AP、AC
∵AC长为定值,
∴要使△PAC的周长最小,只需PA+PC最小.
∵点A关于对称轴x=1的对称点是点B(5,0),抛物线y=-x2+4x+5与y轴交点C的坐标为(0,5),
∴由几何知识可知,PA+PC=PB+PC为最小,
设直线BC的解析式为y=kx+b(k≠0),
将B(5,0)、C(0,5)代入得
,
解得
,
∴y=-x+5,
当x=2时,y=-2+5=3,
∴点P的坐标为(2,3).
分析:(1)把点A、B的坐标代入抛物线解析式求出b、c的值,即可得到抛物线解析式,然后整理成顶点式形式,再写出顶点坐标即可;
(2)因为AC的长度一定,所以只要找出点P到A、C两点的距离之和最小即可,根据轴对称确定最短路径问题,连接BC与对称轴的交点即为所求的点P,设直线BC的解析式为y=kx+b(k≠0),利用待定系数法求出直线BC的解析式,然后求解即可.
点评:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,利用轴对称确定最短路线问题,难度中等,(2)确定出点P的位置是解题的关键.
∴
解得
∴抛物线的解析式为y=-x2+4x+5,
∵y=-x2+4x+5=-(x-2)2+9,
∴Q(2,9);
(2)如图,连接BC,交对称轴于点P,连接AP、AC
∵AC长为定值,
∴要使△PAC的周长最小,只需PA+PC最小.
∵点A关于对称轴x=1的对称点是点B(5,0),抛物线y=-x2+4x+5与y轴交点C的坐标为(0,5),
∴由几何知识可知,PA+PC=PB+PC为最小,
设直线BC的解析式为y=kx+b(k≠0),
将B(5,0)、C(0,5)代入得
解得
∴y=-x+5,
当x=2时,y=-2+5=3,
∴点P的坐标为(2,3).
分析:(1)把点A、B的坐标代入抛物线解析式求出b、c的值,即可得到抛物线解析式,然后整理成顶点式形式,再写出顶点坐标即可;
(2)因为AC的长度一定,所以只要找出点P到A、C两点的距离之和最小即可,根据轴对称确定最短路径问题,连接BC与对称轴的交点即为所求的点P,设直线BC的解析式为y=kx+b(k≠0),利用待定系数法求出直线BC的解析式,然后求解即可.
点评:本题是二次函数综合题,主要利用了待定系数法求二次函数解析式,利用轴对称确定最短路线问题,难度中等,(2)确定出点P的位置是解题的关键.
练习册系列答案
相关题目
| A、-1<x<3 | B、3<x<-1 | C、x>-1或x<3 | D、x<-1或x>3 |