题目内容
.
如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(3)如图2,连接BC,PB,PC,设△PBC的面积为S.
①求S关于t的函数表达式;
②求P点到直线BC的距离的最大值,并求出此时点P的坐标.
下列实数:3,0,,,0.35,其中最小的实数是( )
A. 3 B. 0 C. D. 0.35
如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )
A. 15° B. 30° C. 45° D. 60°
已知互为相反数,互为倒数,,的绝对值为2.求.
若与|互为相反数,则 ________ .
小明做了以下5道题:①.;②.;③.;④.;⑤. .请你帮他检查一下,他一共做对了多少道?( )
A. 1 B. 2 C. 3 D. 4
袋子中有8个白球和若干个黑球,小华从袋中任意摸出一球,记下颜色后放回袋中,摇匀后又摸出一球,再记下颜色,做了100次后,共有32次摸出白球,据此估计袋中黑球有________个.
已知关于x的方程x2﹣2(m+1)x+m2+2=0.
(1)若方程总有两个实数根,求m的取值范围;
(2)若两实数根x1、x2满足(x1+1)(x2+1)=8,求m的值.