题目内容

精英家教网如图,四边形ABCD和四边形BEFD都是矩形,且点C恰好在EF上.若AB=1,AD=2,则S△BCE为(  )
A、1
B、
2
5
5
C、
2
3
D、
4
5
分析:根据题意可得出△BCD的面积占矩形BDFE的一半,再根据CD:BC=AB:AD=1:2可得出△BCE和△DCF的面积比,从而可求出S△BCE
解答:解:由题意得:△BCD的面积占矩形BDFE的一半,
∴S△BCD=1,
∴S△BCE+S△CDF=1,
又∵CD:BC=AB:AD=1:2,
∴S△BCE::S△CDF=1:4,
故可得S△BCE=
4
5

故选D.
点评:本题考查了解直角三角形及矩形的性质,难度一般,解答本题的关键是掌握面积比等于相似比的平方及△BCD的面积占矩形BDFE的一半.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网