题目内容
如图,?ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=
- A.4cm
- B.5cm
- C.6cm
- D.7cm
A
分析:根据四边形ABCD是平行四边形,得出AB∥CD,∠A=∠C,∠CDE=∠AED,根据DE⊥AB,得出∠AED和∠CDE是直角,求出∠CDF的度数,最后根据DF⊥BC,求出∠C、∠A的度数,最后根据∠ADE=30°,AE=2cm,即可求出答案.
解答:∵四边形ABCD是平行四边形,
∴AB∥CD,∠A=∠C,
∴∠CDE=∠AED,
∵DE⊥AB,
∴∠AED=90°,
∴∠CDE=90°,
∵∠EDF=60°,
∴∠CDF=30°,
∵DF⊥BC,
∴∠DFC=90°,
∴∠C=60°,
∴∠A=60°,
∴∠ADE=30°,
∴AD=2DE,
∵AE=2,
∴AD=2×2=4(cm);
故选A.
点评:此题考查了平行四边形的性质和含30°角的直角三角形,用到的知识点是平行四边形的性质和垂直的定义30°角的直角三角形的性质,关键是求出∠ADE=30°.
分析:根据四边形ABCD是平行四边形,得出AB∥CD,∠A=∠C,∠CDE=∠AED,根据DE⊥AB,得出∠AED和∠CDE是直角,求出∠CDF的度数,最后根据DF⊥BC,求出∠C、∠A的度数,最后根据∠ADE=30°,AE=2cm,即可求出答案.
解答:∵四边形ABCD是平行四边形,
∴AB∥CD,∠A=∠C,
∴∠CDE=∠AED,
∵DE⊥AB,
∴∠AED=90°,
∴∠CDE=90°,
∵∠EDF=60°,
∴∠CDF=30°,
∵DF⊥BC,
∴∠DFC=90°,
∴∠C=60°,
∴∠A=60°,
∴∠ADE=30°,
∴AD=2DE,
∵AE=2,
∴AD=2×2=4(cm);
故选A.
点评:此题考查了平行四边形的性质和含30°角的直角三角形,用到的知识点是平行四边形的性质和垂直的定义30°角的直角三角形的性质,关键是求出∠ADE=30°.
练习册系列答案
相关题目
| 5 |
| A、当旋转角为90°时,四边形ABEF一定为平行四边形 |
| B、在旋转的过程中,线段AF与EC总相等 |
| C、当旋转角为45°时,四边形BEDF一定为菱形 |
| D、当旋转角为45°时,四边形ABEF一定为等腰梯形 |