题目内容

24、某商店购进一批单价为8元的商品,如果按每件10元出,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?
分析:根据题意列出一元二次函数,将函数化简为顶点式,便可知当x=14时,所获得的利润最大.
解答:解:设销售单价定为x元(x≥10),每天所或利润为y元,
则y=[100-10(x-10)]•(x-8)
=-10x2+280x-1600
=-10(x-14)2+360
所以将销售定价定为14元时,每天所获销售利润最大,且最大利润是360元
点评:本题主要考查了二次函数的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网