题目内容

问题背景

已知在△ABC中,AB边上的动点D由A向B运动(与A、B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于点F,点H是线段AF上一点.

(1)初步尝试

如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等.求证:HF=AH+CF.

小王同学发现可以由以下两种思路解决问题:

思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立;

思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.

请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分);

(2)类比探究

如图2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是:1,求的值;

(3)延伸拓展

如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D,E的运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网