题目内容
如图,平面上有四个点A,B,C,D,根据下列语句画图:
(1)画线段AC、BD交于E点;
(2)作射线BC;
(3)取一点P,使点P既在直线AB上又在直线CD上.
数学活动
问题情境:
如图1,在∆ABC中,AB=AC,∠BAC=90°,D,E分别是边AB,AC的中点,将∆ADE绕点A顺时针旋转α角(0°<α<90°)得到∆AD′E′,连接CE′,BD′.探究CE′与BD′的数量关系;
图1 图2 图3 图4
探究发现:
(1)图1中,CE′与BD′的数量关系是________;
(2)如图2,若将问题中的条件“D,E分别是边AB,AC的中点”改为“D为AB边上任意一点,DE∥BC交AC于点E”,其他条件不变,(1)中CE′与BD′的数量关系还成立吗?请说明理由;
拓展延伸:
(3)如图3,在(2)的条件下,连接BE′,CD′,分别取BC,CD′,E′D′,BE′的中点F,G,H,I,顺次连接F,G,H,I得到四边形FGHI.请判断四边形FGHI的形状,并说明理由;
(4)如图4,在∆ABC中,AB=AC,∠BAC=60°,点D,E分别在AB,AC上,且DE∥BC,将∆ADE绕点A顺时针旋转60°得到∆AD′E′,连接CE′,BD′.请你仔细观察,提出一个你最关心的数学问题(例如:CE′与BD′相等吗?).
一货轮在C处测得灯塔A在货轮的北偏西30的方向上,随后货轮以80海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上,求此时货轮距灯塔A的距离AB(结果保留3个有效数字, ≈2.449).
我们定义一种变换S:对于一个由5个数组成的数列S1,将其中的每个数换成该数在S1中出现的次数,可得到一个新数列S2.例如:当数列S1是 (4,2,3,4,2)时,经过变换S可得到的新数列S2是(2,2,1,2,2).若数列S1可以由任意5个数组成,则下列的数列可作为S2的是( )
A. (1,2,1,1,2) B. (2,2,2,3,3) C. (1,1,2,2,3) D. (1,2,1,2,2)
直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.
(1)在图1中,若∠BCE=40°,求∠ACF的度数;
(2)在图1中,若∠BCE=α,直接写出∠ACF的度数(用含α的式子表示);
(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,探究:写出∠ACF与∠BCE的度数之间的关系,并说明理由.
计算: .
苹果进价是每千克x元,要得到10%的利润,则该苹果售价应是每千克_____元(用含x的代数式表示)
为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M= ,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是_____.
夏汛期间,某条河流的最高水位高出警戒线水位2.5米,最低水位低于警戒线水位1.5米,则这期间最高水位比最低水位高( )
A. 1米 B. 4米 C. ﹣1米 D. ﹣4米