题目内容
如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是( )
A. 6 B. 5 C. 4 D. 3
如图,已知DC∥FP,∠1=∠2,∠FED=28º,∠AGF=80º,FH平分∠EFG.
(1)说明:DC∥AB;
(2)求∠PFH的度数.
下列说法错误的是( )
A.有一组对边平行但不相等的四边形是梯形
B.有一个角是直角的梯形是直角梯形
C.等腰梯形的两底角相等
D.直角梯形的两条对角线不相等
解下列方程:
(1) (2)
(3) (4)
如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB= .
(12分)如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.
(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(6分)如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).
(1)求反比例函数的解析式和点B的坐标;
(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?
(10分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金元,要使(2)中所有方案获利相同, 值应是多少?此时,哪种方案对公司更有利?
若与互为相反数,则的值为( )
A. -b B. C. -8 D. 8