题目内容
【题目】如图,抛物线
与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,
且
.
![]()
(1)求抛物线的解析式及点D的坐标;
(2)点P为y轴右侧抛物线上一点,是否存在点P使
?若存在请求出点P坐标;若不存在请说明理由.
【答案】(1)
,点D的坐标为
;(2)点P的坐标为
或
或
.
【解析】
(1)根据题意得出C、B两点坐标,然后代入原解析式建立方程组求解,之后进一步即可得出解析式,然后进一步配方即可得出点D坐标;
(2)首先求出
,然后设
进一步根据题意建立方程求解即可.
(1)由题意可得
,
,
代入
中,
得
解得![]()
∴抛物线的解析式为
.
∴![]()
∴点D的坐标为
;
(2)存在点P使
.
∵当
时,
或
,
∴
.
∴
.
设
,
∵
.
∴
.
∴
.
∴
或
.
解得
,
,或
(舍去),
,
∴点P的坐标为
或
或
.
练习册系列答案
相关题目