题目内容
如图.已知A、B两点的坐标分别为A(0,
),B(2,0).直线AB与反比例
函数
的图象交于点C和点D(-1,a).
(1)求直线AB和反比例函数的解析式.
(2)求∠ACO的度数.
(3)将△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为多少时,OC′⊥AB,并求此时线段AB’的长.
把A(0,
∴直线AB的解析式为:y=-
∵点D(-1,a)在直线AB上,
∴a=
又∵D点(-1,3
∴m=-1×3
∴反比例函数的解析式为:y=-
(2)过C点作CE⊥x轴于E,如图,
根据题意得
∴C点坐标为(3,-
∴OE=3,CE=
∴OC=
而OA=2
∴OA=OC,
又∵OB=2,
∴AB=
∴∠OAB=30°,
∴∠ACO=30°;
(3)∵∠ACO=30°,
而要OC′⊥AB,
∴∠COC′=90°-30°=60°,
即△OBC绕点O逆时针方向旋转α角(α为锐角),得到△OB′C′,当α为60°时,OC′⊥AB;如图,
∴∠BOB′=60°,
∴点B'在AB上,
而∠OBA=60°,
∴BB′=2,
∴AB′=4-2=2.
分析:(1)设直线AB的解析式为:y=kx+b,把A(0,
(2)由y=-
(3)由∠ACO=30°,要OC′⊥AB,则∠COC′=90°-30°=60°,即α=60°,得到∠BOB′=60°,而∠OBA=60°,得到△OBB′为等边三角形,于是有B′在AB上,BB′=2,即可求出AB′.
点评:本题考查了利用待定系数法求图象的解析式.也考查了点在函数图象上,点的横纵坐标满足函数图象的解析式和旋转的性质以及含30度的直角三角形三边的关系.
练习册系列答案
相关题目