题目内容
如图1,四边形ABCD中,AD∥BC,AB⊥BC,点E在边AB上,∠DEC=900,且DE=EC.
![]()
![]()
(1)求证:△ADE≌△BEC;
(2)若AD=a,AE=b,DE=
c,请用图1证明勾股定理:a2+b2=c2;
(3)线段AB上另有一点F(不与点E重合),且DF⊥CF(如图2),若AD=2,BC=4,求EF的长.
练习册系列答案
相关题目
某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:
课题 | 测量教学楼高度 | |
方案 | 一 | 二 |
图示 |
|
|
测得数据 |
|
|
参考数据 | sin22°≈0.37,cos22°≈0.93, tan22°≈0.40,sin13°≈0.22, cos13°≈0.97,tan13°≈0.23 | sin32°≈0.53,cos32°≈0.85, tan32°≈0.62,sin43°≈0.68, cos43°≈0.73,tan43°≈0.93 |
请你选择其中的一种方案,求教学楼的高度(结果保留整数).