题目内容

作业宝如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,则|OA|•|OB|=________.

-
分析:利用一元二次方程的根与二次函数图象与x轴交点的关系得出|OA|•|OB|=|x1×x2|,进而得出即可.
解答:∵AO=|x1|,BO=|x2|,x1×x2=,由图象可得出:a<0,b>0,
∴|OA|•|OB|=|x1×x2|=-
故答案为:-
点评:此题主要考查了抛物线与x轴的交点以及根与系数的关系等知识,根据已知得出|OA|•|OB|=|x1×x2|是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网