题目内容
三角形两边的长分别是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为________________.
关于x的一元二次方程x2﹣2ax﹣1=0(其中a为常数)的根的情况是( )
A. 有两个不相等的实数根 B. 可能有实数根,也可能没有
C. 有两个相等的实数根 D. 没有实数根
如图,已知直线l1∥l2,∠1=50°,那么∠2=_____.
如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A、B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.
(1)用画树状图或列表法求乙获胜的概率;
(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.
袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是白球的概率为”,则这个袋中白球大约有________个.
将抛物线向左移动2个单位,再向上移动3个单位后,抛物线的顶点为( )
A. (-2,3) B. (2,3) C. (2,-3) D. (-2,-3)
问题背景:
如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;
探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;
实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是( )
A. B. C. D.
比较大小:①0________﹣0.5, ②﹣________﹣(用“>”或“<”填写)