题目内容

12、设计一套邮票,设计要求如下:该套邮票由四种不同面值的邮票组成,面值数为正整数,并且对于连续整数1,2…,R中的任一面值数,都能够通过适当选取面值互相不同且不超过三枚的邮票实现.试求出R的最大值,并给出一种相应的设计.
分析:先求出从四种不同面值的邮票中选取面值互不相同且不超过三张的不同取法,求出R的取值范围,再假设设计四种邮票的面值数分别为1,2,4,8,根据R的取值范围进行验证即可求出答案.
解答:解:从四种不同面值的邮票中选取面值互不相同且不超过三张的不同取法共有4+6+4=14(种).
不同取法所获得邮票的总面值可能相同,也可能不同,至多只有14种不同的总面值,
∴R≤14(5分)
又∵若设计四种邮票的面值数分别为1,2,4,8.(5分)
∵1=1,2=2,3=1+2,4=4,5=1+4,6=2+4,7=1+2+4,
8=8,9=1+8,10=2+8,11=1+2+8,12=4+8,13=1+4+8,14=2+4+8,
∴R≤14
从而R最大为14,上述四种面值数作为一套,即是符合题意的设计.(5分)
故答案为:14.
点评:本题考查的是排列组合问题,根据题意得出R的取值范围是解答此题的关键,此题难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网