ÌâÄ¿ÄÚÈÝ
¡¾ÌâÄ¿¡¿ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¹ýµã
¡¢
·Ö±ð×÷
ÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪ
¡¢
£®
(1)ÇóÖ±Ïß
ºÍÖ±Ïß
µÄ½âÎöʽ£»
(2)µã
ΪֱÏß
ÉϵÄÒ»¸ö¶¯µã£¬¹ý
×÷
ÖáµÄ´¹Ïß½»Ö±Ïß
ÓÚµã
£¬ÊÇ·ñ´æÔÚÕâÑùµÄµã
£¬Ê¹µÃÒÔ
¡¢
¡¢
¡¢
Ϊ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬Çó´Ëʱµã
µÄºá×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
(3)Èô
ÑØ
·½ÏòÆ½ÒÆ(µã
ÔÚÏß¶Î
ÉÏ£¬ÇÒ²»Óëµã
ÖØºÏ)£¬ÔÚÆ½ÒƵĹý³ÌÖУ¬ÉèÆ½ÒÆ¾àÀëΪ
£¬
Óë
ÖØµþ²¿·ÖµÄÃæ»ý¼ÇΪ
£¬ÊÔÇó
Óë
µÄº¯Êý¹ØÏµÊ½£®
![]()
¡¾´ð°¸¡¿£¨1£©y=-x+4£¬y=
x£»£¨2£©m=
»ò
£»£¨3£©S=
.
¡¾½âÎö¡¿
£¨1£©ÀíÓÉ´ý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣻
£¨2£©Èçͼ1ÖУ¬ÉèM£¨m£¬
£©£¬ÔòN£¨m£¬-m+4£©£®µ±AC=MNʱ£¬A¡¢C¡¢M¡¢NΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬¿ÉµÃ|-m+4-
|=3£¬½â·½³Ì¼´¿É£»
£¨3£©Èçͼ2ÖУ¬ÉèÆ½ÒÆÖеÄÈý½ÇÐÎΪ¡÷A¡äO¡äC¡ä£¬µãC¡äÔÚÏß¶ÎCDÉÏ£®ÉèO¡äC¡äÓëxÖá½»ÓÚµãE£¬ÓëÖ±ÏßOD½»ÓÚµãP£»ÉèA¡äC¡äÓëxÖá½»ÓÚµãF£¬ÓëÖ±ÏßOD½»ÓÚµãQ£®¸ù¾ÝS=S¡÷OFQ-S¡÷OEP=
OFFQ-
OEPG¼ÆËã¼´¿É.
½â£º£¨1£©ÉèÖ±ÏßCDµÄ½âÎöʽΪy=kx+b£¬ÔòÓÐ
£¬½âµÃ
£¬
¡àÖ±ÏßCDµÄ½âÎöʽΪy=-x+4£®
ÉèÖ±ÏßODµÄ½âÎöʽΪy=mx£¬ÔòÓÐ3m=1£¬m=
£¬
¡àÖ±ÏßODµÄ½âÎöʽΪy=
x.
£¨2£©´æÔÚ£®
ÀíÓÉ£ºÈçͼ1ÖУ¬ÉèM£¨m£¬
£©£¬ÔòN£¨m£¬-m+4£©£®
![]()
µ±AC=MNʱ£¬A¡¢C¡¢M¡¢NΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¬
¡à|-m+4-
|=3£¬
½âµÃm=
»ò
.
£¨3£©Èçͼ2ÖУ¬ÉèÆ½ÒÆÖеÄÈý½ÇÐÎΪ¡÷A¡äO¡äC¡ä£¬µãC¡äÔÚÏß¶ÎCDÉÏ£®
ÉèO¡äC¡äÓëxÖá½»ÓÚµãE£¬ÓëÖ±ÏßOD½»ÓÚµãP£»
ÉèA¡äC¡äÓëxÖá½»ÓÚµãF£¬ÓëÖ±ÏßOD½»ÓÚµãQ£®
![]()
ÒòÎªÆ½ÒÆ¾àÀëΪ
t£¬ËùÒÔˮƽ·½ÏòµÄÆ½ÒÆ¾àÀëΪt£¨0¡Üt£¼2£©£¬
ÔòͼÖÐAF=t£¬F£¨1+t£¬0£©£¬Q£¨1+t£¬
£©£¬C¡ä£¨1+t£¬3-t£©£®
ÉèÖ±ÏßO¡äC¡äµÄ½âÎöʽΪy=3x+b£¬
½«C¡ä£¨1+t£¬3-t£©´úÈëµÃ£ºb=-4t£¬
¡àÖ±ÏßO¡äC¡äµÄ½âÎöʽΪy=3x-4t£®
¡àE£¨
£¬0£©£®
ÁªÁ¢y=3x-4tÓëy=
£¬½âµÃx=
£®
¡àS=S¡÷OFQ-S¡÷OEP=
OFFQ-
OEPG
=
£¨1+t£©£¨
£©-
=
.