ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90°£¬AB=10cm£¬AC£ºBC=4£º3£¬µãPÔÚABÉÏAP=2£®µãE¡¢Fͬʱ´ÓµãP³ö·¢£¬·Ö±ðÑØPA¡¢PBÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÏòµãA¡¢BÔÈËÙÔ˶¯£¬µãEµ½´ïµãAºóÒÔÔËÙ¶ÈÑØABÏòµãBÔ˶¯£®µãFÔ˶¯µ½µãBʱֹͣ£®µãEÒ²ËæÖ®Í£Ö¹Ô˶¯£®ÔÚµãE¡¢FÔ˶¯¹ý³ÌÖУ®ÒÔEFΪ±ß×÷Õý·½ÐÎ EFGH£¬Ê¹ËüÓë¡÷ABCÔÚÏß¶ÎABµÄͬ²à£¬ÉèµãE¡¢FÔ˶¯µÄʱ¼äΪtÃ루t£¾0£©£¬Õý·½ÐÎ EFGHËüÓë¡÷ABCÖØµþ²¿·ÖµÄÃæ»ýΪS£®£¨1£©Ð´³öAC¡¢BCµÄ³¤£»
£¨2£©µ±t=1ʱ£¬Õý·½ÐÎ EFGHµÄ±ß³¤ÊÇ______£¬µ±t=3ʱ£¬Õý·½ÐÎ EFGHµÄ±ß³¤Îª______£»
£¨3£©µ±0£¼t¡Ü2ʱ£¬ÇóSÓëtµÄº¯Êý¹ØÏµÊ½£®
£¨4£©Ö±½Óд³ö£¬ÔÚÕû¸öÔ˶¯¹ý³ÌÖУ¬µ±Õý·½ÐÎ EFGHËüÓë¡÷ABCÖØµþ²¿·ÖÊÇÖ±½ÇÌÝÐÎʱtµÄȡֵ·¶Î§£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¿ÉÉèAC=4x£¬ÔòBC=3x£¬¸ù¾Ý¹´¹É¶¨Àí¿ÉµÃ·½³Ì£¬´Ó¶øÇó³öAC¡¢BCµÄ³¤£»
£¨2£©µ±t=1ʱ£¬¿ÉµÃ£¬EP=1£¬PF=1£¬EF=2¼´ÎªÕý·½ÐÎEFGHµÄ±ß³¤£»µ±t=3ʱ£¬PE=1£¬PF=3£¬¼´EF=4£»
£¨3£©Õý·½ÐÎEFGHÓë¡÷ABCÖØµþ²¿·ÖµÄÐÎ×´£¬ÒÀ´ÎΪÕý·½ÐΡ¢Îå±ßÐκÍÌÝÐΣ»¿É·ÖÈý¶Î·Ö±ð½â´ð£º¢Ùµ±0£¼t¡Ü
ʱ£»¢Úµ±
£¼t¡Ü
ʱ£»¢Ûµ±
£¼t¡Ü2ʱ£»ÒÀ´ÎÇóSÓëtµÄº¯Êý¹ØÏµÊ½£»
£¨4£©EµãÓëAµãÖØºÏ»òFµãÓëBµãÖØºÏʱ£¬Õý·½ÐÎEFGHÓë¡÷ABCÖØµþ²¿·ÖÊÇÖ±½ÇÌÝÐΣ¬ÒÀ´ËµÃµ½tµÄȡֵ£®
½â´ð£º½â£º£¨1£©ÉèAC=4x£¬ÔòBC=3x£¬ÒÀÌâÒâÓÐ
£¨4x£©2+£¨3x£©2=102£¬
½âµÃx1=2£¬x2=-2£¨¸ºÖµÉáÈ¥£©£¬
ÔòAC=4x=8¡¢BC=3x=6£®
¹ÊACµÄ³¤Îª8¡¢BCµÄ³¤Îª6£»
£¨2£©µ±t=1ʱ£¬ÔòPE=1£¬PF=1£¬
¡àÕý·½ÐÎEFGHµÄ±ß³¤ÊÇ2£»
µ±t=3ʱ£¬PE=1£¬PF=3£¬
¡àÕý·½ÐÎEFGHµÄ±ß³¤ÊÇ4£®
¹Ê´ð°¸Îª£º2£¬4£»
£¨3£©µ±Õý·½ÐÎEFGHÓë¡÷ABCÖØµþ²¿·ÖµÄÐÎ״ΪÕý·½ÐÎʱ£¬0£¼t¡Ü
£¬
SÓëtµÄº¯Êý¹ØÏµÊ½ÊÇS=2t×2t=4t2£»
µ±t=
ʱEFGMÊÇÌÝÐΣ¬
¹Êµ±
£¼t¡Ü
ʱ£¬
SÓëtµÄº¯Êý¹ØÏµÊ½ÊÇ£º
S=4t2-
×[2t-
£¨2-t£©]×
[2t-
£¨2-t£©]£¬
=-
t2+
t-
£»
µ±
£¼t¡Ü2ʱ£»
SÓëtµÄº¯Êý¹ØÏµÊ½ÊÇ£º
S=
£¨t+2£©×
£¨t+2£©-
×
£¨2-t£©£¨2-t£©=3t£»
£¨4£©µ±t=1»ò6ʱ£¬Õý·½ÐÎEFGHÓë¡÷ABCÖØµþ²¿·ÖÊÇÖ±½ÇÌÝÐΣ®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶¯µãº¯ÊýÎÊÌ⣬ÆäÖÐÓ¦Óõ½ÁËÏàËÆÐΡ¢Õý·½Ðμ°¹´¹É¶¨ÀíµÄÐÔÖÊ£¬¶ÍÁ¶ÁËѧÉúÔËÓÃ×ÛºÏ֪ʶ½â´ðÌâÄ¿µÄÄÜÁ¦£®
£¨2£©µ±t=1ʱ£¬¿ÉµÃ£¬EP=1£¬PF=1£¬EF=2¼´ÎªÕý·½ÐÎEFGHµÄ±ß³¤£»µ±t=3ʱ£¬PE=1£¬PF=3£¬¼´EF=4£»
£¨3£©Õý·½ÐÎEFGHÓë¡÷ABCÖØµþ²¿·ÖµÄÐÎ×´£¬ÒÀ´ÎΪÕý·½ÐΡ¢Îå±ßÐκÍÌÝÐΣ»¿É·ÖÈý¶Î·Ö±ð½â´ð£º¢Ùµ±0£¼t¡Ü
£¨4£©EµãÓëAµãÖØºÏ»òFµãÓëBµãÖØºÏʱ£¬Õý·½ÐÎEFGHÓë¡÷ABCÖØµþ²¿·ÖÊÇÖ±½ÇÌÝÐΣ¬ÒÀ´ËµÃµ½tµÄȡֵ£®
½â´ð£º½â£º£¨1£©ÉèAC=4x£¬ÔòBC=3x£¬ÒÀÌâÒâÓÐ
£¨4x£©2+£¨3x£©2=102£¬
½âµÃx1=2£¬x2=-2£¨¸ºÖµÉáÈ¥£©£¬
ÔòAC=4x=8¡¢BC=3x=6£®
¹ÊACµÄ³¤Îª8¡¢BCµÄ³¤Îª6£»
£¨2£©µ±t=1ʱ£¬ÔòPE=1£¬PF=1£¬
¡àÕý·½ÐÎEFGHµÄ±ß³¤ÊÇ2£»
µ±t=3ʱ£¬PE=1£¬PF=3£¬
¡àÕý·½ÐÎEFGHµÄ±ß³¤ÊÇ4£®
¹Ê´ð°¸Îª£º2£¬4£»
£¨3£©µ±Õý·½ÐÎEFGHÓë¡÷ABCÖØµþ²¿·ÖµÄÐÎ״ΪÕý·½ÐÎʱ£¬0£¼t¡Ü
SÓëtµÄº¯Êý¹ØÏµÊ½ÊÇS=2t×2t=4t2£»
µ±t=
¹Êµ±
SÓëtµÄº¯Êý¹ØÏµÊ½ÊÇ£º
S=4t2-
=-
µ±
SÓëtµÄº¯Êý¹ØÏµÊ½ÊÇ£º
S=
£¨4£©µ±t=1»ò6ʱ£¬Õý·½ÐÎEFGHÓë¡÷ABCÖØµþ²¿·ÖÊÇÖ±½ÇÌÝÐΣ®
µãÆÀ£º´ËÌâÖ÷Òª¿¼²éÁ˶¯µãº¯ÊýÎÊÌ⣬ÆäÖÐÓ¦Óõ½ÁËÏàËÆÐΡ¢Õý·½Ðμ°¹´¹É¶¨ÀíµÄÐÔÖÊ£¬¶ÍÁ¶ÁËѧÉúÔËÓÃ×ÛºÏ֪ʶ½â´ðÌâÄ¿µÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿