题目内容
计算:(1)(3a2)3•(a4) 2-(-a5)2•(a2)2;(2)(-2a2b3)4+a8•(-2b4)3
(3)(-1)2009+(-
| 1 | 2 |
(4)-2100×0.5100×(-1)999
(5)(p-q) 6÷[(p-q) 2•(q-p) 3]
(6)已知3×9m×27m=316,求m的值
分析:(1)(2)先乘方,再乘除,最后合并同类项;(3)先乘方,再合并;(4)利用积的乘方法则计算;(5)把p-q看作整体,做同底数幂的乘除法运算;(6)将左边化为3为底数的同底数幂进行运算.
解答:解:(1)(3a2)3•(a4) 2-(-a5)2•(a2)2,
=27a6•a8-a10•a4,
=27a14-a14,
=26a14;
(2)(-2a2b3)4+a8•(-2b4)3,
=16a8b12-8a8b12,
=8a8b12;
(3)(-1)2009+(-
)-2-(π-1)0-|-3|,
=-1+4-1-3,
=-1;
(4)-2100×0.5100×(-1)999,
=-(2×0.5)100×(-1),
=1;
(5)(p-q) 6÷[(p-q) 2•(q-p) 3],
=(p-q) 6÷[-(p-q) 5],
=-(p-q),
=q-p;
(6)∵3×9m×27m=316,
∴31+2m+3m=316,
∴1+2m+3m=16,
解得m=3.
=27a6•a8-a10•a4,
=27a14-a14,
=26a14;
(2)(-2a2b3)4+a8•(-2b4)3,
=16a8b12-8a8b12,
=8a8b12;
(3)(-1)2009+(-
| 1 |
| 2 |
=-1+4-1-3,
=-1;
(4)-2100×0.5100×(-1)999,
=-(2×0.5)100×(-1),
=1;
(5)(p-q) 6÷[(p-q) 2•(q-p) 3],
=(p-q) 6÷[-(p-q) 5],
=-(p-q),
=q-p;
(6)∵3×9m×27m=316,
∴31+2m+3m=316,
∴1+2m+3m=16,
解得m=3.
点评:本题考查了整式的混合运算.关键是按照混合运算的顺序进行,同时注意运算法则的灵活运用.
练习册系列答案
相关题目