题目内容
| A、2 | B、2.2 | C、2.4 | D、2.5 |
分析:根据已知得出四边形AEPF是矩形,得出EF=AP,要使EF最小,只要AP最小即可,根据垂线段最短得出即可.
解答:解:连接AP,
∵∠A=90°,PE⊥AB,PF⊥AC,
∴∠A=∠AEP=∠AFP=90°,
∴四边形AFPE是矩形,
∴EF=AP,
要使EF最小,只要AP最小即可,
过A作AP⊥BC于P,此时AP最小,
在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:AB=5,
由三角形面积公式得:
×4=
×5×AP,
∴AP=2.4,
即EF=2.4,
故选C.
∵∠A=90°,PE⊥AB,PF⊥AC,
∴∠A=∠AEP=∠AFP=90°,
∴四边形AFPE是矩形,
∴EF=AP,
要使EF最小,只要AP最小即可,
过A作AP⊥BC于P,此时AP最小,
在Rt△BAC中,∠A=90°,AC=4,AB=3,由勾股定理得:AB=5,
由三角形面积公式得:
| 1 |
| 2 |
| 1 |
| 2 |
∴AP=2.4,
即EF=2.4,
故选C.
点评:本题利用了矩形的性质和判定、勾股定理、垂线段最短的应用,解此题的关键是确定出何时,EF最短,题目比较好,难度适中.
练习册系列答案
相关题目