题目内容

已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕作业宝EF交AD边于E,交BC边于F,分别连接AF和CE.
(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.

(1)证明:连接EF交AC于O,
当顶点A与C重合时,折痕EF垂直平分AC,
∴OA=OC,∠AOE=∠COF=90°
∵在矩形ABCD中,AD∥BC,
∴∠EAO=∠FCO,
∴△AOE≌△COF(ASA).
∴OE=OF
∴四边形AFCE是菱形.

(2)解:四边形AFCE是菱形,∴AF=AE=10.
设AB=x,BF=y,∵∠B=90,
∴(x+y)2-2xy=100①
又∵S△ABF=24,∴xy=24,则xy=48.②
由①、②得:(x+y)2=196
∴x+y=14,x+y=-14(不合题意舍去)
∴△ABF的周长为x+y+AF=14+10=24.

(3)解:过E作EP⊥AD交AC于P,则P就是所求的点.
证明:由作法,∠AEP=90°,
由(1)得:∠AOE=90°,又∠EAO=∠EAP,
∴△AOE∽△AEP,
=,则AE2=AO•AP
∵四边形AFCE是菱形,∴AO=AC,AE2=AC•AP
∴2AE2=AC•AP
即P的位置是:过E作EP⊥AD交AC于P.
分析:(1)因为是对折所以AO=CO,利用三角形全等证明EO=FO,四边形便是菱形;
(2)因为面积是24,也就是AB、BF的积可以求出,所以求周长只要求出AB、BF的和就可以,而结合勾股定理它们和的平方减去乘积二倍就是AF的平方;
(3)因为AC=AO所以可以从与△AOE相似的角度考虑,即过E作EP⊥AD.
点评:本题主要考查(1)菱形的判定方法“对角线互相垂直且平分的四边形”,(2)相似三角形的判定和性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网