题目内容

如图,在Rt△ABC中,∠C=90°,D是AC中点,DE⊥AB于E,试证:BE2=BC2+AE2

证明:∵D是AC中点,
∴AD=CD.
∵∠C=90°,DE⊥AB于E,
∴BE2-AE2=(BD2-DE2)-(AD2-DE2)=BD2-AD2=BD2-CD2=BC2
故BE2=BC2+AE2
分析:根据直角三角形的性质和勾股定理可得BE2-AE2=(BD2-DE2)-(AD2-DE2)=BD2-AD2=BD2-CD2=BC2,从而证明结论.
点评:考查了直角三角形的性质和勾股定理,注意线段相互间的转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网