题目内容
(1)求AB的长(精确到0.1米,参考数据:
| 3 |
| 2 |
(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.
分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;
(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.
解答:解:(1)由題意得,
在Rt△ADC中,AD=
=
=21
=36.33(米),…2分
在Rt△BDC中,BD=
=
=7
=12.11(米),…4分
则AB=AD-BD=36.33-12.11=24.22≈24.2(米)…6分
(2)超速.
理由:∵汽车从A到B用时2秒,
∴速度为24.2÷2=12.1(米/秒),
∵12.1×3600=43560(米/时),
∴该车速度为43.56千米/小时,…9分
∵大于40千米/小时,
∴此校车在AB路段超速.…10分
在Rt△ADC中,AD=
| CD |
| tan30° |
| 21 | ||||
|
| 3 |
在Rt△BDC中,BD=
| CD |
| tan60° |
| 21 | ||
|
| 3 |
则AB=AD-BD=36.33-12.11=24.22≈24.2(米)…6分
(2)超速.
理由:∵汽车从A到B用时2秒,
∴速度为24.2÷2=12.1(米/秒),
∵12.1×3600=43560(米/时),
∴该车速度为43.56千米/小时,…9分
∵大于40千米/小时,
∴此校车在AB路段超速.…10分
点评:此题考查了解直角三角形的应用问题.此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.
练习册系列答案
相关题目