题目内容
求证:DE是⊙O的切线.
分析:连OD,由OB=OD,AB=AC,可得到∠ODB=∠C,即OD∥AC,而DE⊥AC,即可得到OD⊥DE,从而得到DE是⊙O的切线.
解答:证明:连接OD,如图,
则OB=OD
∴∠OBD=∠ODB,
又∵AB=AC
∴∠OBD=∠C
∴∠ODB=∠C
∴OD∥AC
又∵DE⊥AC
∴OD⊥DE
∴DE是⊙O的切线.
则OB=OD
∴∠OBD=∠ODB,
又∵AB=AC
∴∠OBD=∠C
∴∠ODB=∠C
∴OD∥AC
又∵DE⊥AC
∴OD⊥DE
∴DE是⊙O的切线.
点评:本题考查了圆的切线的判定方法.若直线与圆有唯一的公共点,则此直线是圆的切线;若圆心到直线的距离等于圆的半径,则此直线是圆的切线;经过半径的外端点与半径垂直的直线是圆的切线.当已知直线过圆上一点,要证明它是圆的切线,则要连接圆心和这个点,证明这个连线与已知直线垂直即可;当没告诉直线过圆上一点,要证明它是圆的切线,则要过圆心作直线的垂线,证明垂线段等于圆的半径.同时考查了等腰三角形的性质.
练习册系列答案
相关题目