题目内容

如图,已知AB=DC,AD=BC,E,F是DB上两点且AE∥CF,若∠AEB=115°,∠ADB=35°,则∠BCF=


  1. A.
    150°
  2. B.
    40°
  3. C.
    80°
  4. D.
    90°
C
分析:可证明△BCF≌△DAE,则∠BCF=∠DAE,根据三角形外角的性质可得出∠DAE的度数,从而得出∠BCF的度数.
解答:∵AB=DC,AD=BC,
∴四边形ABCD是平行四边形,
∴AD∥BC,
∴∠CBF=∠ADE,
∵AE∥CF,
∴∠CFB=∠AED,
∴△BCF≌△DAE,
∴∠BCF=∠DAE,
∵∠AEB=115°,∠ADB=35°,
∴∠AEB=∠DAE+∠ADB,
∴∠DAE=∠AEB-∠ADB=115°-35°=80°,
故选C.
点评:本题考查了平行四边形的判定和性质,全等三角形的判定和性质,外角的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网