题目内容
【题目】如图,直线y=﹣x+5与双曲线y=
(x>0)相交于A,B两点,与x轴相交于C点,△BOC的面积是
.若将直线y=﹣x+5向下平移1个单位,则所得直线与双曲线y=
(x>0)的交点有( )![]()
A.0个
B.1个
C.2个
D.0个,或1个,或2个
【答案】B
【解析】解:令直线y=﹣x+5与y轴的交点为点D,过点O作OE⊥直线AC于点E,过点B作BF⊥x轴于点F,如图所示.![]()
令直线y=﹣x+5中x=0,则y=5,
即OD=5;
令直线y=﹣x+5中y=0,则0=﹣x+5,解得:x=5,
即OC=5.
在Rt△COD中,∠COD=90°,OD=OC=5,
∴tan∠DCO=
=1,∠DCO=45°.
∵OE⊥AC,BF⊥x轴,∠DCO=45°,
∴△OEC与△BFC都是等腰直角三角形,
又∵OC=5,
∴OE=
.
∵S△BOC=
BCOE=
×
BC=
,
∴BC=
,
∴BF=FC=
BC=1,
∵OF=OC﹣FC=5﹣1=4,BF=1,
∴点B的坐标为(4,1),
∴k=4×1=4,
即双曲线解析式为y= ![]()
.
将直线y=﹣x+5向下平移1个单位得到的直线的解析式为y=﹣x+5﹣1=﹣x+4,
将y=﹣x+4代入到y=
中,得:﹣x+4=
,
整理得:x2﹣4x+4=0,
∵△=(﹣4)2﹣4×4=0,
∴平移后的直线与双曲线y=
只有一个交点.
故选B.
练习册系列答案
相关题目