题目内容
点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使得|PA-PB|的值最大的点,Q是y轴上使得QA+QB的值最小的点,则OP•OQ=________.
5
分析:连接AB并延长交x轴于点P,作A点关于y轴的对称点A′连接A′B交y轴于点Q,求出点Q与y轴的交点坐标即可得出结论.
解答:
解:连接AB并延长交x轴于点P,由三角形的三边关系可知,点P即为x轴上使得|PA-PB|的值最大的点,
∵点B是正方形的中点,
∴点P即为AB延长线上的点,此时P(3,0)即OP=3;
作A点关于y轴的对称点A′连接A′B交y轴于点Q,则A′B即为QA+QB的最小值,
∵A′(-1,2),B(2,1),
设过A′B的直线为:y=kx+b,则
,
解得
,
∴Q(0,
),即OQ=
,
∴OP•OQ=3×
=5.
故答案为:5.
点评:本题考查的是轴对称-最短路线问题,根据题意得出P、Q两点的坐标是解答此题的关键.
分析:连接AB并延长交x轴于点P,作A点关于y轴的对称点A′连接A′B交y轴于点Q,求出点Q与y轴的交点坐标即可得出结论.
解答:
∵点B是正方形的中点,
∴点P即为AB延长线上的点,此时P(3,0)即OP=3;
作A点关于y轴的对称点A′连接A′B交y轴于点Q,则A′B即为QA+QB的最小值,
∵A′(-1,2),B(2,1),
设过A′B的直线为:y=kx+b,则
解得
∴Q(0,
∴OP•OQ=3×
故答案为:5.
点评:本题考查的是轴对称-最短路线问题,根据题意得出P、Q两点的坐标是解答此题的关键.
练习册系列答案
相关题目