题目内容
如图,平面上有四个点A、B、C、D,根据下列语句画图
(1)画直线AB;
(2)作射线BC;
(3)画线段CD;
(4)连接AD,并将其反向延长至E,使DE=2AD.
已知,如图,MN⊥AB,垂足为G,MN⊥CD,垂足为H,直线EF分别交AB、CD于G、Q,∠GQC=120°,求∠EGB和∠HGQ的度数。
若ax﹣3b3与﹣3ab2y﹣1是同类项,则xy=_________.
如图,△ABC和△ADE都是等边三角形,点D在BC边上,AB边上有一点F,且BF=DC,连接EF、EB。
(1)求证:△ABE≌△ACD;
(2)求证:四边形EFCD是平行四边形。
如图1,已知∠AOB=140°,∠AOC=30°,OE是∠AOB内部的一条射线,且OF平分∠AOE.
(1)若∠EOB=30°,则∠COF= ;
(2)若∠COF=20°,则∠EOB= ;
(3)若∠COF=n°,则∠EOB= (用含n的式子表示).
(4)当射线OE绕点O逆时针旋转到如图2的位置时,请把图补充完整;此时,∠COF与∠EOB有怎样的数量关系?请说明理由.
某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保证利润率等于5%,则该商品应该打______折.
若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则 的值为( )
A. B. 49! C. 2450 D. 2!
如图,小明在楼上点A处测得旗杆BC顶部B的仰角为30°,测得旗杆底部C的俯角为60°,已知点A距地面高AD为12m,旗杆的高度为________m.
如图,△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于D点,E为BC的中点,连接ED并延长交BA延长线于F点.
(1)求证:直线DE是⊙O的切线;
(2)若AB=,AD=1,求线段AF的长;
(3)当D为EF的中点时,试探究线段AB与BC之间的数量关系.