题目内容

如图,在△ABC中,∠B=∠C=60°,点D、E分别在边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠GEC=
40
40
°.
分析:由对顶角相等可得∠CGE=∠FGB′,由两角对应相等可得△ADF∽△B′GF,那么∠CGE=∠ADF的度数,则∠GEC=180°-∠C-∠CGE.
解答:解:在△ABC中,∠B=∠C=60°,
由翻折可得∠B′=∠B=60°,
∴∠A=∠B′=60°,
∵∠AFD=∠GFB′,
∴△ADF∽△B′GF,
∴∠ADF=∠B′GF,
∵∠EGC=∠FGB′,
∴∠EGC=∠ADF=80°,
∴∠GEC=180°-∠C-∠CGE=180°-60°-80°=40°.
故答案为:40°.
点评:本题考查了翻折变换问题,得到所求角与所给角的度数的关系是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网