题目内容
如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于
A. B. C. D.
如图,在平面直角坐标系中,A、B为x轴上两点,C、D为y轴上的两点,经
过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封
闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线C2:(<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求的值.
若直角三角形的两条直角边分别为3cm、4cm,则斜边上的高为( )
A. cm B. cm C. 5cm D. cm
计算________.
比较tan20°,tan50°,tan70°的大小,下列不等式正确的是( )
A. tan70°<tan50°<tan20° B. tan50°<tan20°<tan70°
C. tan20°<tan50°<tan70° D. tan20°<tan70°<tan50°
如图,在?ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB⊥BD.
(1)求证:△AED≌△CFB;
(2)若∠A=30°,∠DEB=45°,求证:DA=DF.
如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC,连接EF.若AB=10,则EF的长是________.
(10分) 把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.
(1)求证:△BHE≌△DGF;
(2)若AB=6cm,BC=8cm,求线段FG的长.
如图,已知点A(-1,0)和点B(1,2),在y轴上确定点P,使得△ABP为直角三角形,则满足条件的点P共有( )
A.5个 B.4个 C.3个 D.2个