题目内容
【题目】在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形。
![]()
(1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明;
(2)△PBE是否构成等腰三角形?若能,指出所有的情况(即求出△PBE为等腰三角形时CE的长,直接写出结果);若不能请说明理由。
【答案】解:1)PD=PE。以图②为例,连PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°, …………………………………… 1分
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB………………………1分
∴△DPC≌△EPB(AAS)………………………1分
∴PD=PE…………………………………1分
2)能,①当EP=EB时,CE=
…………………………………1分
②当EP=PB时,点E 在BC上,则点E和C重合,CE=0………1分
③当BE=BP时,若点E在BC上,则CE=
……………1分
若点E在CB的延长线上,则CE=
………1分
【解析】(1)连接PC,通过证明△PCD≌△PBE,得出PD=PE.
(2)分为点C与点E重合、CE=
、CE=1、E在CB的延长线上四种情况进行说明.
【题目】为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.
![]()
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:
一周诗词诵背数量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人数 | 1 | 3 | 5 | 6 | 10 | 15 |
请根据调查的信息
(1)活动启动之初学生“一周诗词诵背数量”的中位数为_____________,平均数为___________;
(2)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.