题目内容
分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答:解:由抛物线的开口向上知a>0,与y轴的交点为在y轴的正半轴上,∴c>0,
对称轴为x=-
>0,∴a、b异号,即b<0,
抛物线与x轴有两个交点,∴b2-4ac>0,
当x=1时,可确定a+b+c<0,
当x=-1时,可确定a-b+c>0.
故答案不唯一,如b2-4ac>0.
对称轴为x=-
| b |
| 2a |
抛物线与x轴有两个交点,∴b2-4ac>0,
当x=1时,可确定a+b+c<0,
当x=-1时,可确定a-b+c>0.
故答案不唯一,如b2-4ac>0.
点评:二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
(2)b由对称轴和a的符号确定:由对称轴公式x=-
判断符号.
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
(5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号.
(6)由对称轴公式x=-
,可确定2a+b的符号.
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
(2)b由对称轴和a的符号确定:由对称轴公式x=-
| b |
| 2a |
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
(5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号.
(6)由对称轴公式x=-
| b |
| 2a |
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
| x | -0.1 | -0.2 | -0.3 | -0.4 |
| y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |