题目内容

已知:如图,在△ABC中,BC=AC=6,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.
(1)求证:点D是AB的中点;
(2)求点O到直线DE的距离.
考点:圆周角定理,等腰三角形的性质
专题:
分析:(1)连接CD,由BC为直径可知CD⊥AB,又因为BC=AC,由等腰三角形的底边“三线合一”证明结论;
(2)连接OD,则OD为△ABC的中位线,OD∥AC,已知DE⊥AC,可证DE⊥OC,即可知OD的长即为点O到直线DE的距离.
解答:(1)证明:连接CD,
∵BC是圆的直径,
∴∠BDC=90°,
∴CD⊥AB,
又∵AC=BC,
∴AD=BD,
即点D是AB的中点;

(2)证明:连接OD,
∵AD=BD,OB=OC,
∴DO是△ABC的中位线,
∴DO∥AC,OD=
1
2
AC=
1
2
×6=3,
又∵DE⊥AC,
∴DE⊥DO,
∴点O到直线DE的距离为3.
点评:此题考查了圆周角定理、等腰三角形的性质以及三角形中位线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网