题目内容
从﹣2,﹣1,0,1,2这五个数中任取一个数,作为关于x的一元二次方程x2﹣x+k=0中的k值,则所得的方程中有两个不相等的实数根的概率是 .
二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中错误的是( )
A.a>0
B.当x≥1时,y随x的增大而增大
C.c<0
D.当﹣1<x<3时,y>0
已知x2﹣2x﹣5=0,则2x2﹣4x的值为 .
如图,对称轴为x=1的抛物线经过A(﹣1,0),B(4,5)两点.
(1)求抛物线的解析式;
(2)P为直线AB上的动点,过点P作x轴的垂线交抛物线于点Q.
①当PQ=6时,求点P的坐标;
②是否存在点P,使以A、P、Q为顶点的三角形为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.
如图,A、B、C、D在⊙O上,OC⊥AB,垂足为E,∠ADC=30°,⊙O的半径为2.求:
(1)∠BOC的度数;
(2)由BE、CE及弧BC围成的阴影部分面积.
如图,正△ABC内接于⊙O,⊙O的直径为2分米,若在这个圆面上随意抛一粒小米,则小米落在正△ABC内部的概率是( )
A. B. C. D.
如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是( )
A.15° B.20° C.25° D.30°
如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为 cm.
已知:如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒2°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒4°的速度旋转,如图2,设旋转时间为t(0秒≤t≤90秒).
(1)用含t的代数式表示∠MOA的度数.
(2)在运动过程中,当∠AOB第二次达到60°时,求t的值.
(3)在旋转过程中是否存在这样的t,使得射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角(指大于0°而不超过180°的角)的平分线?如果存在,请直接写出t的值;如果不存在,请说明理由.