题目内容

如图所示,矩形ABCD中,AB=2,BC=3,P为BC边上与BC两点不重合的任意一点.设PA=x,D到PA的距离为y,则y与x的函数关系式为________,自变量的取值范围是________.

y=    
分析:把已知的线段用含x、y的代数式表示出来,转化到两个三角形中,易证其相似,从而得出关系式,进而求出x的取值范围.
解答:∵四边形ABCD是矩形,
∴AD∥BC,∠B=90°,
∴∠DAE=∠APB,
∵DE⊥AP,∴∠AED=90°,
∴∠B=∠AED=90°,
∴△ABP∽△DEA;

即:
∴y=
故答案为:y=
∵AP为直角三角形ABP的斜边,AB=2,
∴AP>2,即x>2,
∵当点P移动到点C时AP最长,
∴AP=x===
∵AP<
∴2<x<
故答案为:2<x<
点评:此题主要利用了相似三角形的性质,利用性质建立已知和未知之间的联系是关键,根据图形化到相应的部分中,运用相关知识解决.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网