题目内容
圆内接正六边形的边心距为,则这个正六边形的面积为 cm2.
因式分【解析】﹣2x2y+12xy﹣18y= .
(8分)(2015•聊城)在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).
(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;
(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.
如图1,一条抛物线与轴交于A,B两点(点A在点B的左侧),与轴交于点C,且当x=-1和x=3时,的值相等.直线与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.
(1)求这条抛物线的表达式.
(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时动点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为秒.
①若使△BPQ为直角三角形,请求出所有符合条件的值;
②求为何值时,四边形ACQ P的面积有最小值,最小值是多少?
(3)如图2,当动点P运动到OB的中点时,过点P作PD⊥轴,交抛物线于点D,连接OD,OM,MD得△ODM,将△OPD沿轴向左平移个单位长度(),将平移后的三角形与△ODM重叠部分的面积记为,求与的函数关系式.
先化简,再求值:.其中满足一元二次方程.
如图,在平面直角坐标系中,A(-3,1),以点O为直角顶点作等腰直角三角形AOB,双曲线在第一象限内的图象经过点B,设直线AB的解析式为,当时,的取值范围是( ).
A. B.或
C. D.或
如右图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数有可能是( ).
A.5或6 B.5或7 C.4或5或6 D.5或6或7
某油箱容量为60 L的汽车,加满汽油后行驶了100 Km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x Km,邮箱中剩油量为y L,则y与x之间的函数解析式和自变量取值范围分别是( )
A.y=0.12x,x>0 B.y=60﹣0.12x,x>0 C.y=0.12x,0≤x≤500 D.y=60﹣0.12x,0≤x≤500
(7分)化简,并求值,其中a与2、3构成△ABC的三边,且a为整数.