题目内容
如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;
(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y与x之间的函数关系式还成立?试说明理由.
【答案】分析:(1)利用等腰三角形的性质得∠ABD=∠ACE=105°,利用等量代换求得∠CAE=∠ADB,故△ADB∽△EAC后,得
,即
所以y=
;
(2)要使y=
,即
成立,则要△ADB∽△EAC.由于∠ABD=∠ECA,故只须∠ADB=∠EAC,利用三角形的内角和和邻补角的概念求得∠EAC+∠BAD=β-α,∠ADB+∠BAD=∠ABC=90°-
,所以只90°-
=β-α,须即β-
=90°.
解答:解:(1)在△ABC中,AB=AC=1,∠BAC=30°,
∴∠ABC=∠ACB=75°,
∴∠ABD=∠ACE=105°,
∵∠DAE=105°,
∴∠DAB+∠CAE=75°,
又∠DAB+∠ADB=∠ABC=75°,
∴∠CAE=∠ADB,
∴△ADB∽△EAC,
∴
即
,所以y=
;
(2)当α、β满足关系式β-
时,函数关系式y=
成立,
理由如下:∵β-
=90°,
∴β-α=90°-
.
又∵∠EAC=∠DAE-∠BAC-∠DAB=β-α-∠DAB,
∠ADB=∠ABC-∠DAB=90°-
-∠DAB,
∴∠ADB=∠EAC;
又∵∠ABD=∠ECA,
∴△ADB∽△EAC,
∴
,
∴
,
∴y=
.
点评:本题利用了等腰三角形的性质,三角形的内角和,邻补角的概念,相似三角形的判定和性质求解.
(2)要使y=
解答:解:(1)在△ABC中,AB=AC=1,∠BAC=30°,
∴∠ABC=∠ACB=75°,
∴∠ABD=∠ACE=105°,
∵∠DAE=105°,
∴∠DAB+∠CAE=75°,
又∠DAB+∠ADB=∠ABC=75°,
∴∠CAE=∠ADB,
∴△ADB∽△EAC,
∴
即
(2)当α、β满足关系式β-
理由如下:∵β-
∴β-α=90°-
又∵∠EAC=∠DAE-∠BAC-∠DAB=β-α-∠DAB,
∠ADB=∠ABC-∠DAB=90°-
∴∠ADB=∠EAC;
又∵∠ABD=∠ECA,
∴△ADB∽△EAC,
∴
∴
∴y=
点评:本题利用了等腰三角形的性质,三角形的内角和,邻补角的概念,相似三角形的判定和性质求解.
练习册系列答案
相关题目