搜索
题目内容
已知直角三角形的两直角边长为3cm和4cm,则斜边上的中线长是________cm,斜边上的高为________cm.
试题答案
相关练习册答案
分析:根据勾股定理先求出斜边,依据直角三角形中斜边上的中线等于斜边的一半求出中线长.再根据面积相等求出斜边上的高.
解答:根据勾股定理,斜边长为
=5cm,由于斜边上的中线长等于斜边的一半,故斜边上的中线长是
cm,根据面积相等,设斜边上的高为xcm,列方程得:
•3•4=
•5•x,解得x=
cm.
故答案为
,
.
点评:利用面积相等来解题,是解决直角三角形问题的常用的方法,可有效简化计算.
练习册系列答案
青苹果同步评价手册系列答案
初中英语知识集锦系列答案
小学语文词语手册吉林教育出版社系列答案
初中总复习中考精编系列答案
创新金卷毕业升学系列答案
创新课时训练系列答案
创新学案课时学练测系列答案
创新学习三级训练系列答案
创新与探究系列答案
达标测试卷系列答案
相关题目
学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,也可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=
1
2
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3
;
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是
0<sadA<2
0<sadA<2
;
(3)如图,已知
sinA=
3
5
,其中A为锐角,试求sadA的值;
(4)设sinA=k,请直接用k的代数式表示sadA的值为
2-2
1-
k
2
.
2-2
1-
k
2
.
.
下列各作图题中,可直接用“边边边”条件作出三角形的是( )
A.已知腰和底边,求作等腰三角形
B.已知两条直角边,求作等腰三角形
C.已知高,求作等边三角形
D.已知腰长,求作等腰直角三角形
学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,也可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)填空:sad60°=______,sad90°=______,sad120°=______;
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是______;
(3)如图,已知
,其中A为锐角,试求sadA的值;
(4)设sinA=k,请直接用k的代数式表示sadA的值为______.
下列各作图题中,可直接用“边边边”条件作出三角形的是( )
A.已知腰和底边,求作等腰三角形
B.已知两条直角边,求作等腰三角形
C.已知高,求作等边三角形
D.已知腰长,求作等腰直角三角形
下列各作图题中,可直接用“边边边”条件作出三角形的是
[ ]
A.已知腰和底边,求作等腰三角形
B.已知两条直角边,求作等腰三角形
C.已知高,求作等边三角形
D.已知腰长,求作等腰直角三角形
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案