题目内容
在△ABC中,∠A=40°,AB=AC,AB的垂直平分线交AC与D,则∠DBC的度数为 .
如图,一架2.5米长的梯子AB,斜靠在一竖直的墙ON上,这时梯足B到墙底端O的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?
如图,∠1和∠2是同位角的是( )
A. B. C. D.
由x<y得到ax>ay的条件是( )
A.a≥0 B.a≤0 C.a>0 D.a<0
到三角形三个顶点的距离相等的点是三角形( )的交点.
A.三个内角平分线 B.三边垂直平分线
C.三条中线 D.三条高
“等边对等角”的逆命题是 .
阅读以下文字并解决问题:对于形如x2+2ax+a2这样的二次三项式,我们可以直接用公式法把它分解成(x+a)2的形式,但对于二次三项式x2+6x﹣27,就不能直接用公式法分解了.此时,我们可以在x2+6x﹣27中间先加上一项9,使它与x2+6x的和构成一个完全平方式,然后再减去9,则整个多项式的值不变. 即:x2+6x﹣27=(x2+6x+9)﹣9﹣27=(x+3)2﹣62=(x+3+6)(x+3﹣6)=(x+9)(x﹣3),像这样,把一个二次三项式变成含有完全平方式的形式的方法,叫做配方法.
(1)利用“配方法”因式分【解析】x2+4xy﹣5y2
(2)如果a2+2b2+c2﹣2ab﹣6b﹣4c+13=0,求a+b+c的值.
若3xm+5y2与x3yn的和是单项式,则nm= .
如图,修建抽水站时,沿着倾斜角为30°的斜坡铺设管道,若量得水管AB的长度为80米,那么点B离水平面的高度BC的长为 米.