题目内容
【题目】如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________.
![]()
【答案】
【解析】先根据等腰直角三角形的性质得到∠BAC=45°,AB=
AC=2
,再根据旋转的性质得∠BAB′=∠CAC′=45°,则点B′、C、A共线,然后根据扇形门口计算,利用线段BC在上述旋转过程中所扫过部分(阴影部分)的面积=S扇形BAB′-S扇形CAC′进行计算即可.
∵△ABC是等腰直角三角形,
∴∠BAC=45°,AB=
AC=2
,
∵△ABC绕点A按顺时针方向旋转45°后得到△AB′C,
∴∠BAB′=∠CAC′=45°,
∴点B′、C、A共线,
∴线段BC在上述旋转过程中所扫过部分(阴影部分)的面积=S扇形BAB′+S△AB′C-S扇形CAC′-S△ABC
=S扇形BAB′-S扇形CAC′
=![]()
故答案为
.
练习册系列答案
相关题目
【题目】有
筐白菜,以每筐
千克为标准,超过或不足的分别用正、负来表示,记录如下:
与标准质量的差 |
|
|
|
|
|
|
筐 数 |
|
|
|
|
|
|
(1)与标准质量比较,
筐白菜总计超过或不足多少千克?
(2)若白菜每千克售价
元,则出售这
筐白菜可卖多少元?