题目内容
如图,半径为2的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是( )
A. 18﹣6π B. 4﹣ C. 9﹣π D. 2﹣π
已知,那么=__________.
如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米/秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是( )
A. B. C. D.
在等腰三角形ABC中,AB=AC=10,BC=12,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=______.
以下列三个正数为三边长度,能构成直角三角形的是( )
A. 1,2,3 B. 2,2,5 C. 2,3, D. 4,5,6
已知直线及位于其两侧的两点,,如图:
()在图①中的直线上求一点,是直线平分.
()能否在直线上找一点,使该点到点,的距离之差的绝对值最大?若能,直接在图②作出该点的位置,若不能,请说明理由.
等腰三角形的两边分别为和,求等腰三角形的周长.
如图,在直角坐标系XOY中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8,点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB—BC—CO以每秒2个单位长的速度作匀速运动.过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.
(1)当t=2时,求线段PQ的长;
(2)求t为何值时,点P与N重合;
(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.
如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是________________.