题目内容
某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元,则这种药品的成本的年平均下降率为_________.
如图,在△ABC中,AB=AC,若以点B为圆心,BC长为半径作弧,交AC于点E,则下列结论一定正确的是( )
A. AE=BE B. BE是∠ABC的角平分线 C. ∠A=∠EBC D. AE=BC
若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是_____.
如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).
(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果;
(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.
如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为__________
若关于x的方程k2x2-(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是
A.k> B.k>且k≠0 C.k< D.k≥且k≠0
如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E.
(1)求抛物线的解析式;
(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PH⊥EO,垂足为H.设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;
(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,请说明理由.
关于抛物线y=x 2 -2x+1,下列说法错误的是( )
A. 开口向上 B. 与x轴有一个交点
C. 对称轴是直线x=1 D. 当x>1时,y随x的增大而减小
如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标____________.