题目内容
已知:如图,RtABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连结两条线段,如果你所连结的两条线段满足相等、垂直或平行关系中的一种,那么请你把它写出来并说明理由。
![]()
解:有 (1)连结CD、EB,则有CD=EB;
(2)连结AF、BD,则有AF⊥BD;
(3)连结BD、EC,则有BD∥EC;
![]()
选(1);
证明:∵Rt△ABC≌Rt△ADE(已知)
∴AC=AE,AD=AB(全等三角形对应边相等)
∠CAB=∠EAB(全等三角形对应角相等)
∴![]()
即:![]()
∴在△ADC和△ABE中:
∵![]()
∴△ADC≌△ABE(SAS)
∴CD=EB
练习册系列答案
相关题目