题目内容
分析:根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.
解答:解:∵CD=CE,
∴∠D=∠DEC,
∵∠D=74°,
∴∠C=180°-74°×2=32°,
∵AB∥CD,
∴∠B=∠C=32°.
故选B.
∴∠D=∠DEC,
∵∠D=74°,
∴∠C=180°-74°×2=32°,
∵AB∥CD,
∴∠B=∠C=32°.
故选B.
点评:本题考查了两直线平行,内错角相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.
练习册系列答案
相关题目