题目内容
如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,则∠AED′等于 °.
将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为 .
(1)计算:(﹣)﹣(+)
(2)解方程:x2﹣2x﹣1=0.
如图,已知矩形ABCD,AB=,BC=3,在BC上取两点E,F(E在F左边),以EF为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.
(1)求△PEF的边长;
(2)在不添加辅助线的情况下,当F与C不重合时,从图中找出一对相似三角形,并说明理由;
(3)求证:PH﹣BE=1.
(1)解方程:(x+1)2=5
(2)解方程:2x2+3=7x.
如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是( )
A. B.2 C.3 D.
如图,在平行四边形ABCD中,E是AB延长线上的一点,若∠A=60°,则∠1的度数为( )
A.120° B.60° C.45° D.30°
A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是( )
A.﹣=30 B.﹣= C.﹣= D. +=30
如图,AB是⊙O的直径,C是⊙O上一点,∠ACD=∠B,AD⊥CD.
(1)求证:CD是⊙O的切线;
(2)若AD=1,OA=2,求AC的值.