题目内容
【题目】如图1,已知
为正方形
的中心,分别延长
到点
,
到点
,使
,
,连结
,将△
绕点
逆时针旋转
角得到△
(如图2).连结
、
.
![]()
(Ⅰ)探究
与
的数量关系,并给予证明;
(Ⅱ)当
,
时,求:
①
的度数;
②
的长度.
【答案】(1)证明见解析(2)①30°②![]()
【解析】(1)首先证明△AOE′≌△BOF′,根据全等三角形的对应边相等,即可证得;
(2)①延长OA到M,使AM=OA,则OM=OE′.易证△OME′是等边三角形,据此∠AE′O的度数即可求得;②在直角△AOB中,利用三角函数即可求得OB的长,然后在直角△OBF′中利用三角函数求得BF′的长.
本题解析:如图:
(1)∵正方形ABCD中,OA=OD=OB,
又∵OF=2OA,OE=2OD,
∴OE=OF,则OE′=OF′,
在△AOE′和△BOF′中,
![]()
∴△AOE′≌△BOF′
∴AE′=BF′;
(2)①延长OA到M,使AM=OA,则OM=OE′.
∵正方形ABCD中,∠AOD=90°,
∴∠AOE′=90°﹣30°=60°,
∴△OME′是等边三角形,
又∵AM=OA,
∴AE′⊥OM,
则∠E′AO=90°,
∴∠AOE′=90°﹣α=60°,
∴在直角△AOE′中,∠AE′O=90°﹣∠AOE′=30°;
②∵∠AOE′=90°﹣α=60°,∠E′OF′=90°,
∴∠AOF′=30°,
又∵∠AOB=90°,
∴∠BOF′=60°,
又∵等腰直角△AOB中,OB=
AB=
,
∴在Rt△ABE'中得到AE'=
OA=
,
又BF'=AE'
∴BF′=
.
![]()
练习册系列答案
相关题目