题目内容

如图,四边形ABCD内接于⊙O,∠BOD=130°,则∠BCD的度数为


  1. A.
    50°
  2. B.
    125°
  3. C.
    115°
  4. D.
    150°
C
分析:根据圆周角定理求出∠A的度数,根据圆内接四边形的性质得出∠A+∠BCD=180°,代入求出即可.
解答:∵弧BCD对的圆周角是∠A,圆心角是∠BOD,∠BOD=130°,
∴∠A=∠BOD=65°,
∵A、B、C、D四点共圆,
∴∠A+∠BCD=180°,
∴∠BCD=115°,
故选C.
点评:本题考查了圆周角定理,圆内接四边形的性质的应用,关键是求出∠A的度数和得出∠A+∠BCD=180°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网