题目内容
【题目】化简:(a﹣1)(a+1)﹣(a﹣1)2
【答案】解:(a﹣1)(a+1)﹣(a﹣1)2=a2﹣1﹣a2+2a﹣1=2a﹣2.【解析】运用平方差公式和完全平方公式即可解答.
【题目】某班数学兴趣小组为了测量建筑物AB的高度,他们选取了地面上一点E,测得DE的长度为8.65米,并以建筑物CD的顶端点C为观测点,测得点A的仰角为45°,点B的俯角为37°,点E的俯角为30°.
(1)求建筑物CD的高度;
(2)求建筑物AB的高度.
(参考数据:≈1.73,sin37°≈,cos37°≈,tan37°≈)
【题目】6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )
A. a=2b B. a=3b C. a=4b D. a=b
【题目】观察下列关于a的单项式,探究其规律:a,3a2,5a3,7a4,9a5,….按照上述规律,第2019个单项式是( )
A. 2019a2019B. 4039a2019C. 4038a2019D. 4037a2019
【题目】先化简,再求值:
(1)2m2-4m+1-2(m2+2m-),其中m=-1;
(2)5xy2-[2x2y-(2x2y-3xy2)],其中(x-2)2+|y+1|=0.
【题目】如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长;(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.
【题目】已知:如图,在平行四边形ABCD和矩形ABEF中,AC与DF相交于点G.
(1) 试说明DF=CE;
(2) 若AC=BF=DF,求∠ACE的度数.
【题目】一个多边形是正多边形的条件是________________________________________.
【题目】上海与杭州的实际距离约200千米,在比例尺为1:5000000的地图上,上海与杭州的图上距离约 厘米.