搜索
题目内容
已知:如图,两等圆
⊙
O
1
,
⊙
O
2
外切,
AB
为外公切线,
A
,
B
分别为切点.若
O
2
A
=5cm
,求
AB
的长.
试题答案
相关练习册答案
答案:
解析:
提示:
(
cm
).
练习册系列答案
小学升学夺冠系列答案
培优好题系列答案
培优60课系列答案
解决问题专项训练系列答案
应用题夺冠系列答案
小学生生活系列答案
小学毕业总复习系列答案
优翼专项小学升学总复习系统强化训练系列答案
小学升初中夺冠密卷系列答案
小学升初中核心试卷系列答案
相关题目
如图,两等圆⊙O
1
、⊙O
2
相交于A、B两点,且两圆互相过圆心,过B作任一直线,分别交⊙O
1
、⊙O
2
于C、D两点,连接AC、AD.
(1)试猜想△ACD的形状,并给出证明.
(2)若已知条件中两圆不一定互相过圆心,试猜想三角形的形状是怎样的?证明你的结论.
(3)若⊙O
1
、⊙O
2
是两个不相等的圆,半径分别为R和r,那么(2)中的猜想还成立吗
?若成立,给出证明;若不成立,那么AC和AD的长与两圆半径有什么关系?说明理由.
已知:如图,两个等圆⊙O
1
和⊙O
2
相交于A,B两点,经过点A的直线与两圆分别交
于点C,点D,经过点B的直线与两圆分别交于点E,点F.若CD∥EF,求证:
(1)四边形EFDC是平行四边形;
(2)
CE
=
DF
.
已知:如图,两个等圆⊙O
1
和⊙O
2
相交于A,B两点,经过点A的直线与两圆分别交于点C,点D,经过点B的直线与两圆分别交于点E,点F.若CD∥EF,求证:
(1)四边形EFDC是平行四边形;
(2)
.
如图,两等圆⊙O
1
、⊙O
2
相交于A、B两点,且两圆互相过圆心,过B作任一直线,分别交⊙O
1
、⊙O
2
于C、D两点,连接AC、AD.
(1)试猜想△ACD的形状,并给出证明.
(2)若已知条件中两圆不一定互相过圆心,试猜想三角形的形状是怎样的?证明你的结论.
(3)若⊙O
1
、⊙O
2
是两个不相等的圆,半径分别为R和r,那么(2)中的猜想还成立吗?若成立,给出证明;若不成立,那么AC和AD的长与两圆半径有什么关系?说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案