题目内容

已知:如图,AB是⊙O的直径,弦数学公式,∠B=60°,OD⊥AC,垂足为D.
(1)求OD的长;
(2)求劣弧AC的长.

解:(1)∵AB是⊙O的直径,
∴∠C=90°,
又∵OD⊥AC,
∴AD=CD=,∠ADO=90°,
∵∠B=60°
∴∠A=30°,
在Rt△AOD中,OA=2,OD=1;

(2)连接OC,则∠AOC=120°,
的长l===
分析:(1)根据AB为直径,证明∠C=90°,由垂径定理求AD,解Rt△ADO可求OD;
(2)连接OC,由(1)可知∠AOC=120°,利用弧长公式求解.
点评:本题考查了本题考查了圆周角定理,解直角三角形,弧长公式的运用.关键是根据垂径定理,把条件集中到Rt△AOD中求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网